의료 AI용 데이터 주석
엔터티 추출 및 인식을 통해 비정형 데이터의 복잡한 정보 잠금 해제
주요 클라이언트
팀이 세계 최고의 AI 제품을 구축할 수 있도록 지원합니다.
의료 분야 데이터의 80%는 구조화되지 않아 액세스가 어렵습니다. 데이터에 액세스하려면 상당한 수동 개입이 필요하므로 사용 가능한 데이터의 양이 제한됩니다. 의학 분야의 텍스트를 이해하려면 그 잠재력을 발휘하기 위해 해당 용어에 대한 깊은 이해가 필요합니다. Shaip은 AI 엔진을 대규모로 개선하기 위해 의료 데이터에 주석을 달 수 있는 전문 지식을 제공합니다.
IDC, 분석 회사:
전 세계적으로 설치된 스토리지 용량 기반은 11.7 제타 바이트 in 2023
IBM, Gartner 및 IDC:
80% 전 세계의 데이터 중 비정형 데이터가 더 이상 쓸모없고 사용할 수 없게 만듭니다.
실제 솔루션
데이터를 분석하여 Medical Text Data Annotation으로 NLP 모델을 교육하기 위한 의미 있는 통찰력 발견
우리는 조직이 구조화되지 않은 의료 데이터(예: 의사 메모, EHR 입원/퇴원 요약, 병리학 보고서 등)에서 중요한 정보를 추출하는 데 도움이 되는 의료 데이터 주석 서비스를 제공하여 기계가 주어진 텍스트 또는 이미지에 있는 임상 항목을 식별하도록 돕습니다. 자격을 갖춘 당사의 도메인 전문가는 증상, 질병, 알레르기 및 약물 치료와 같은 도메인별 통찰력을 제공하여 치료에 대한 통찰력을 얻는 데 도움을 줄 수 있습니다.
우리는 또한 텍스트 문서에 제시된 명명된 엔터티를 자동 식별 및 분류할 수 있는 독점 의료 NER API(사전 훈련된 NLP 모델)를 제공합니다. 의료 NER API는 20천만 개 이상의 관계 및 1.7만 개 이상의 임상 개념이 포함된 독점 지식 그래프를 활용합니다.
데이터 라이센싱 및 수집에서 데이터 주석에 이르기까지 Shaip이 도와드립니다.
- 방사선 촬영, 초음파, 유방 조영술, CT 스캔, MRI 및 광자 방출 단층 촬영을 포함한 의료 이미지, 비디오 및 텍스트의 주석 및 준비
- 의료 텍스트 분류, 명명된 개체 식별, 텍스트 분석 등을 포함한 자연어 처리(NLP)를 위한 제약 및 기타 의료 사용 사례
의료 주석 서비스
당사의 의료 주석 서비스는 의료 분야의 AI 정확성을 강화합니다. 우리는 AI 모델을 교육하기 위한 전문 지식을 활용하여 의료 이미지, 텍스트 및 오디오에 꼼꼼하게 라벨을 지정합니다. 이러한 모델은 진단, 치료 계획 및 환자 치료를 개선합니다. 첨단 의료 기술 애플리케이션을 위한 신뢰할 수 있는 고품질 데이터를 보장합니다. AI의 의료 숙련도를 향상시키려면 우리를 믿으십시오.
이미지 주석
X선, CT 스캔, MRI의 시각적 데이터에 주석을 추가하여 의료 AI를 강화합니다. 전문가 데이터 라벨링에 따라 AI 모델이 진단 및 치료에서 탁월한 성능을 발휘하도록 보장합니다. 우수한 영상 통찰력으로 더 나은 환자 결과를 얻으십시오.
비디오 주석
상세한 비디오 주석을 통해 의료 분야의 AI를 발전시키세요. 의료 영상의 분류 및 세분화를 통해 AI 학습을 강화하세요. 의료 서비스 제공 및 진단 개선을 위해 수술 AI 및 환자 모니터링을 개선하세요.
텍스트 주석
전문적으로 주석이 달린 텍스트 데이터로 의료 AI 개발을 간소화하세요. 손으로 쓴 메모부터 보험 보고서에 이르기까지 방대한 양의 텍스트를 신속하게 분석하고 강화합니다. 의료 발전을 위한 정확하고 실행 가능한 통찰력을 보장합니다.
오디오 주석
NLP 전문 지식을 활용하여 의료 오디오 데이터에 정확하게 주석을 달고 레이블을 지정합니다. 원활한 임상 운영을 위한 음성 지원 시스템을 제작하고 AI를 다양한 음성 활성화 의료 제품에 통합하세요. 전문적인 오디오 데이터 큐레이션을 통해 진단 정확도를 높입니다.
의료 코딩
AI 의료 코딩을 통해 의료 문서를 범용 코드로 변환하여 간소화합니다. 의료 기록 코딩 분야의 최첨단 AI 지원을 통해 정확성을 보장하고 청구 효율성을 높이며 원활한 의료 서비스 제공을 지원합니다.
의료 주석 프로세스
주석 프로세스는 일반적으로 클라이언트의 요구 사항과 다르지만 주로 다음을 포함합니다.
위상 1 : 기술 도메인 전문 지식(범위 및 주석 지침 이해)
위상 2 : 프로젝트에 적합한 리소스 교육
위상 3 : 주석 문서의 피드백 주기 및 QA
의료 주석 사용 사례
고급 AI 및 ML 알고리즘은 다양한 의료 프로세스를 활용하여 의료를 변화시키고 있습니다. 이러한 최첨단 기술은 의료 자동화를 가능하게 하여 효율성, 정확성 및 환자 치료를 향상시킵니다. 잠재적인 영향을 더 잘 이해하기 위해 다음 사용 사례를 살펴보겠습니다.
방사선과
당사의 방사선 이미지 주석 서비스는 AI 진단을 강화하고 전문성을 강화합니다. 각 X-ray, MRI 및 CT 스캔에는 해당 분야 전문가가 꼼꼼하게 라벨을 지정하고 검토합니다. 훈련 및 검토의 이러한 추가 단계는 이상과 질병을 발견하는 AI의 능력을 향상시킵니다. 고객에게 배송되기 전에 정확성이 향상됩니다.
순환기내과
심장학에 초점을 맞춘 이미지 주석은 AI 진단을 향상시킵니다. 우리는 복잡한 심장 관련 이미지에 라벨을 붙이고 AI 모델을 훈련시키는 심장학 전문가를 초빙합니다. 고객에게 데이터를 보내기 전에 전문가들은 각 이미지를 검토하여 최고의 정확성을 보장합니다. 이 프로세스를 통해 AI는 심장 상태를 보다 정확하게 감지할 수 있습니다.
치과 의술
치과 분야의 이미지 주석 서비스는 AI 진단 도구를 향상시키기 위해 치과 이미지에 라벨을 붙입니다. 충치, 정렬 문제 및 기타 치아 상태를 정확하게 식별함으로써 SME는 AI가 환자 결과를 개선하고 치과의사가 정확한 치료 계획 및 조기 발견을 할 수 있도록 지원합니다.
우리의 전문성
1. 임상 개체 인식/주석
대량의 의료 데이터와 지식은 주로 비정형 형식으로 의료 기록에서 사용할 수 있습니다. Medical entity Annotation을 사용하면 구조화되지 않은 데이터를 구조화된 형식으로 변환할 수 있습니다.
2. 속성 주석
2.1 의약품 속성
약물과 그 속성은 임상 영역의 중요한 부분인 거의 모든 의료 기록에 문서화되어 있습니다. 지침에 따라 약물의 다양한 속성을 식별하고 주석을 달 수 있습니다.
2.2 실험실 데이터 속성
실험실 데이터는 대부분 의료 기록의 속성과 함께 제공됩니다. 지침에 따라 실험실 데이터의 다양한 속성을 식별하고 주석을 달 수 있습니다.
2.3 신체 측정 속성
신체 측정에는 대부분 의료 기록의 속성이 수반됩니다. 그것은 주로 활력 징후로 구성됩니다. 신체 측정의 다양한 속성을 식별하고 주석을 달 수 있습니다.
3. 종양학 특정 NER 주석
일반적인 의료 NER 주석과 함께 종양학, 방사선학과 등과 같은 도메인별 주석에 대해서도 작업할 수 있습니다. 다음은 암 문제, 조직학, 암 병기, TNM 병기, 암 등급, 치수, 임상현황, 종양표지자검사, 암의학, 암수술, 방사선, 연구유전자, 변이코드, 신체 부위
4. 역효과 NER 및 관계 주석
주요 임상 실체 및 관계를 식별하고 주석을 추가하는 것과 함께 특정 약물 또는 시술의 부작용도 주석을 추가할 수 있습니다. 범위는 다음과 같습니다. 부작용 및 원인 물질을 표시합니다. 부작용과 원인 사이의 관계 지정.
5. 관계 주석
임상 개체를 식별하고 주석을 추가한 후 개체 간에 관련 관계도 지정합니다. 둘 이상의 개념 간에 관계가 존재할 수 있습니다.
6. 주장 주석
임상 개체 및 관계를 식별하는 것과 함께 임상 개체의 상태, 부정 및 주제를 할당할 수도 있습니다.
7. 임시 주석
의료 기록에서 시간적 엔터티에 주석을 달면 환자 여정의 타임라인을 구축하는 데 도움이 됩니다. 특정 이벤트와 관련된 날짜에 대한 참조 및 컨텍스트를 제공합니다. 다음은 날짜 개체입니다 – 진단 날짜, 절차 날짜, 투약 시작 날짜, 투약 종료 날짜, 방사선 시작 날짜, 방사선 종료 날짜, 입원 날짜, 퇴원 날짜, 상담 날짜, 메모 날짜, 발병.
8. 섹션 주석
의료관련 문서, 이미지, 데이터 등의 각 부분 또는 부분을 체계적으로 정리하고 라벨을 붙이고 분류하는 과정. 이를 통해 구조화되고 쉽게 액세스할 수 있는 정보를 생성하여 임상 의사 결정 지원, 의학 연구 및 의료 데이터 분석과 같은 다양한 목적에 사용할 수 있습니다.
9. ICD-10-CM 및 CPT 코딩
지침에 따른 ICD-10-CM 및 CPT 코드의 주석. 레이블이 지정된 각 의료 코드에 대해 레이블 지정 결정을 입증하는 증거(텍스트 스니펫)도 코드와 함께 주석이 추가됩니다.
10. RXNORM 코딩
지침에 따른 RXNORM 코드의 주석. 라벨링된 각 의료 코드에 대해 라벨링 결정을 입증하는 증거(텍스트 스니펫)도 코드와 함께 주석 처리됩니다.0
11. SNOMED 코딩
지침에 따른 SNOMED 코드의 주석. 레이블이 지정된 각 의료 코드에 대해 레이블 지정 결정을 입증하는 증거(텍스트 스니펫)도 코드와 함께 주석이 추가됩니다.
12. UMLS 코딩
지침에 따른 UMLS 코드의 주석. 레이블이 지정된 각 의료 코드에 대해 레이블 지정 결정을 입증하는 증거(텍스트 스니펫)도 코드와 함께 주석이 추가됩니다.
13. CT 스캔
당사의 이미지 주석 서비스는 상세한 해부학적 구조에 중점을 두고 AI 훈련을 위한 정확한 라벨링을 위한 CT 스캔을 전문으로 합니다. 분야별 전문가는 최고의 정확성을 위해 각 이미지를 검토하고 교육합니다. 이 세심한 프로세스는 진단 도구 개발에 도움이 됩니다.
14. MRI
당사의 MRI 이미지 주석 서비스는 AI 진단을 미세 조정합니다. 당사의 해당 분야 전문가는 각 스캔을 배송하기 전에 최고의 정확성을 위해 교육하고 검토합니다. 우리는 AI 모델 훈련을 향상시키기 위해 MRI 스캔에 정확하게 라벨을 붙입니다. 이 프로세스는 이상 징후와 구조를 정확히 찾아내는 데 도움이 됩니다. 당사의 서비스를 통해 의료 평가 및 치료 계획의 정확성을 높이세요.
15. 엑스레이
X선 이미지 주석은 AI 진단을 더욱 선명하게 만듭니다. 우리 전문가들은 골절과 이상을 정확하게 찾아내어 각 이미지에 세심하게 라벨을 붙입니다. 또한 고객에게 전달되기 전에 최고의 정확성을 위해 이러한 라벨을 교육하고 검토합니다. 귀하의 AI를 개선하고 더 나은 의료 영상 분석을 얻으려면 우리를 믿으십시오.
성공 사례
임상 보험 주석
사전 승인 절차는 의료 서비스 제공자와 지불인을 연결하고 치료가 지침을 따르도록 하는 데 중요합니다. 의료 기록에 주석을 다는 것은 이 프로세스를 최적화하는 데 도움이 되었습니다. 표준을 준수하면서 문서와 질문을 일치시켜 클라이언트 작업 흐름을 개선했습니다.
문제 : 6,000건의 의료 사례에 대한 주석은 의료 데이터 민감도를 고려하여 엄격한 일정 내에 정확하게 작성되어야 했습니다. 품질 주석 및 규정 준수를 보장하려면 업데이트된 임상 지침 및 HIPAA와 같은 개인 정보 보호 규정을 엄격히 준수해야 했습니다.
해결 방법 : 우리는 6,000개 이상의 의료 사례에 주석을 달고 의료 문서와 임상 설문지를 연관지었습니다. 이를 위해서는 임상 지침을 준수하면서 증거와 반응을 꼼꼼하게 연결해야 했습니다. 해결된 주요 과제는 대규모 데이터 세트에 대한 촉박한 마감 기한과 지속적으로 발전하는 임상 표준을 처리하는 것이었습니다.
신뢰할 수 있는 의료 주석 파트너로 Shaip을 선택해야 하는 이유
사람들
전담 및 훈련된 팀:
- 데이터 생성, 라벨링 및 QA를 위한 30,000명 이상의 공동 작업자
- 자격을 갖춘 프로젝트 관리 팀
- 경험이 풍부한 제품 개발 팀
- 인재 풀 소싱 및 온보딩 팀
방법
최고의 공정 효율성은 다음을 통해 보장됩니다.
- 강력한 6시그마 스테이지 게이트 프로세스
- 6시그마 블랙벨트로 구성된 전담 팀 – 핵심 프로세스 소유자 및 품질 준수
- 지속적인 개선 및 피드백 루프
플랫폼
특허 받은 플랫폼은 다음과 같은 이점을 제공합니다.
- 웹 기반 엔드 투 엔드 플랫폼
- 완벽한 품질
- 더 빠른 TAT
- 원활한 전달
왜 샤이프인가?
전담팀
데이터 과학자들은 데이터 준비에 시간의 80% 이상을 소비하는 것으로 추정됩니다. 아웃소싱을 통해 팀은 명명된 엔터티 인식 데이터 세트를 수집하는 지루한 부분을 우리에게 남겨두고 강력한 알고리즘 개발에 집중할 수 있습니다.
확장성
평균적인 ML 모델은 명명된 데이터 세트의 큰 청크를 수집하고 태그를 지정해야 하므로 회사는 다른 팀에서 리소스를 가져와야 합니다. 우리와 같은 파트너와 함께 비즈니스 성장에 따라 쉽게 확장할 수 있는 도메인 전문가를 제공합니다.
더 나은 품질
하루 종일 주석을 다는 전담 도메인 전문가는 바쁜 일정에서 주석 작업을 수용해야 하는 팀과 비교할 때 더 나은 작업을 수행할 것입니다. 말할 필요도 없이 더 나은 출력을 제공합니다.
운영 우수성
당사의 입증된 데이터 품질 보증 프로세스, 기술 검증 및 여러 단계의 QA를 통해 기대를 뛰어 넘는 동급 최고의 품질을 제공할 수 있습니다.
개인 정보 보호를 통한 보안
우리는 기밀을 보장하기 위해 고객과 협력하는 동안 개인 정보와 함께 최고 수준의 데이터 보안을 유지하는 것으로 인증을 받았습니다.
경쟁력 있는 가격
숙련된 작업자 팀을 큐레이팅, 교육 및 관리하는 전문가로서 우리는 프로젝트가 예산 내에서 전달되도록 할 수 있습니다.
추천 자료
블로그
명명된 엔터티 인식(NER) – 개념, 유형
NER(Named Entity Recognition)는 최고의 기계 학습 및 NLP 모델을 개발하는 데 도움이 됩니다. 이 매우 유익한 게시물에서 NER 사용 사례, 예 및 더 많은 것을 배우십시오.
블로그
Healthcare Labeling Co.를 고용하기 전에 물어봐야 할 5가지 질문
품질 교육 의료 데이터 세트는 AI 기반 의료 모델의 결과를 향상시킵니다. 그러나 올바른 의료 데이터 라벨링 서비스 공급자를 선택하는 방법은 무엇입니까?
복잡한 프로젝트를 위한 의료 주석 전문가를 찾고 계십니까?
고유한 AI/ML 솔루션을 위한 데이터 세트를 수집하고 주석을 추가하는 방법을 알아보려면 지금 문의하십시오.
자주 묻는 질문 (FAQ)
명명된 엔터티 인식은 자연어 처리의 일부입니다. NER의 주요 목적은 정형 및 비정형 데이터를 처리하고 이러한 명명된 엔터티를 미리 정의된 범주로 분류하는 것입니다. 일부 일반적인 범주에는 이름, 위치, 회사, 시간, 금전적 가치, 이벤트 등이 포함됩니다.
간단히 말해서 NER는 다음을 처리합니다.
명명된 엔터티 인식/탐지 – 문서에서 단어 또는 일련의 단어를 식별합니다.
명명된 엔터티 분류 – 감지된 모든 엔터티를 미리 정의된 범주로 분류합니다.
자연어 처리는 음성과 텍스트에서 의미를 추출할 수 있는 지능형 기계를 개발하는 데 도움이 됩니다. 머신 러닝은 이러한 지능형 시스템이 대량의 자연어 데이터 세트에 대한 교육을 통해 학습을 계속할 수 있도록 지원합니다. 일반적으로 NLP는 세 가지 주요 범주로 구성됩니다.
언어의 구조와 규칙 이해 – 구문
단어, 텍스트, 말의 의미를 도출하고 이들의 관계를 식별 - 의미론
음성 단어를 식별하고 인식하여 텍스트로 변환 - 음성
미리 결정된 엔터티 분류의 일반적인 예는 다음과 같습니다.
사람: 마이클 잭슨, 오프라 윈프리, 버락 오바마, 수잔 서랜든
위치: 캐나다, 호놀룰루, 방콕, 브라질, 케임브리지
관리: 삼성, 디즈니, 예일대학교, 구글
시간: 15.35시 12분, 오후 XNUMX시,
NER 시스템을 만드는 다양한 접근 방식은 다음과 같습니다.
사전 기반 시스템
규칙 기반 시스템
머신 러닝 기반 시스템
간소화된 고객 지원
효율적인 인적 자원
간소화된 콘텐츠 분류
검색 엔진 최적화
정확한 콘텐츠 추천